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Abstract-In this study, the propagation of an initially plane wave in a linear isotropic nonhomogeneous
viscoelastic medium, where the nonhomogeneity varies transversely to the direction of propagation, is
investigated. For this purpose, first the propagation of waves in a linear isotropic viscoelastic medium of
arbitrary inhomogeneity is studied by employing the notion of singular surfaces. The characteristic equation
governing wave velocities, and the growth and decay equations describing the change of the strength of the
discontinuity as the wave front moves are obtained.

In the second part of this work, the propagation of initially plane waves is studied for three types of
inhomogeneities by employing the findings established in the first part. The first kind of inhomogeneity
considered is of axisymmetricaI type where the wave propagation velocity depends on the radial coordinate
only, increasing linearly up to a certain radial distance and remaining constant thereafter. The second kind is
also axisymmetrical with a wave velocity distribution decreasing linearly till a given value of the radial
coordinate. In the third one, the wave velocity is assumed to vary linearly over agiven interval along a certain
coordinate axis only, which is perpendicular to the direction of propagation, and remain constant outside. The
ray and wave front analyses are carried out and the decay or growth of stress and velocity discontinuities are
studied for each of the three cases.

I. INTRODUCTION

Study of propagation of waves in nonhomogeneous elastic and viscoelastic media is of great
importance in understanding the dynamical response of both composite materials an materials
with local impurities. However, due to mathematical complexities involved, only some problems
where the inhomogeneities are assumed to depend on the coordinate coinciding with the direction
of propagation have been investigated (see, e.g. [1-4]). An extensive list of references dealing with
nonhomogeneities of this type may be found in [4]. In Refs. [1-3], the theory of propagating
surfaces of discontinuities is employed and the solutions for stress and particle velocity are
expressed as Taylor series expansions about the time of arrival of the wave front. In Ref. [4],
Longcope and Steele developed approximate solutions for pulse propagation in nonhomogeneous
elastic media where the ratio of the pulse length to a characteristic length of the wave speed
variation is assumed to be small. Karal and Keller [5], and Steele [6] proposed general wave front
analyses for nonhomogeneous elastic media. Steele[6] also gave an interesting example where
the nonhomogeneity depends on the direction transverse to that of wave propagation. Apart from
these studies the work by Ting and Lee [7] should also be cited where they investigated the
propagation of an initially plane wave front in a linear elastic composite medium containing
cylindrical or spherical reinforcing elements, which can, in a sense, be interpreted as the inclusion
of the inhomogeneity transverse to the propagation direction.

In this study, we investigate the propagation of an initially plane wave in a linear isotropic
nonhomogeneous viscoelastic medium where the nonhomogeneity varies transversely to the
direction of propagation. To this end, we first study the propagation of waves in a linear isotropic
viscoelastic medium of arbitrary inhomogeneity by employing the notion of singular surfaces and
by extending the analysis, presented by Valanis[8] for the homogeneous case. The characteristic
equation, obtained through the use of the compatibility equations discussed in detail by
Thomas [9], reveals the existence of the well-known longitudinal and transverse waves whose
velocities depend on the spatial coordinates due to inhomogeneity. The growth and decay
equations, describing the change of the strength of the discontinuity as the wave front moves, are
then derived for longitudinal and transverse waves, separately. These equations indicate that
there are three factors which can possibly influence the decay and growth. They represent the
effects of inhomogeneity, geometry of the wave front and matet:ial internal friction, respectively.
It is further observed that the growth and decay due to geometry and internal friction are
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indirectly affected by the inhomogeneity. Since Ule decay and growth equations are valid along
the rays, they can only be integrated explicitly if the equations of rays are known. The rays are
governed by a set of first order ordinary differential equations discussed in detail by Jeffrey and
Taniuti[lO) for a nonlinear anisotropic medium, which for the sake of completeness are presented
in the reduced form for our linear isotropic inhomogeneous material.

In the second part of this work, we investigate the propagation of initially plane waves for
three types of inhomogeneities by employing the findings established in the first part. The first
kind of inhomogeneity considered isofaxisymmetrical type where the wave propagation velocity
depends on the radial coordinate only, increasing linearly up to a certain radial distance and
remaining constant thereafter (Fig. 2). The second kind is also axisymmetrical with a wave
velocity distribution decreasing linearly till a given value of the radial coordinate and remaining
constant beyond (Fig. 3). In the third kind, the wave velocity is assumed to vary linearly over a
given interval along a certain coordinate axis only, which is perpendicular to the direction of
propagation, and remain constant outside (Fig. 4).

The analysis indicates that the rays in aU these three cases are circular arcs in the linear region
whereas they are straight lines outside (Figs. 2-4). The wave fronts, obtained by forming the loci of
the points on the rays at a fixed time, are also shown in the figures. They are composed of two
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Fig. 1. Geometrical description of a surface of discontinuity.
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Fig. 2. Rays and wave fronts for aXisymmetrical inhomogeneity with radially increasing wave velocity.
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Fig. 3. Rays and wave fronts for axisymmetrical inhomogeneity with radially decreasing wave velocity.
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Fig.4. Rays and wave fronts for unidirectional inhomogeneity.

parts, which we call leading and lagging wave fronts, bringing initial and additional disturbances
to undisturbed and already disturbed material points, respectively. In the figures the secondary
rays and wave fronts caused by the discontinuities in the derivatives of the wave velocity
distributions are shown by dotted lines. The growth and decay equations along the circular rays
before they intersect the axis of symmetry in the first case and before they enter the
homogeneous region in the other two cases are also obtained. These equations exhibit a decay
due to material internal friction, and the stress decay and velocity growth due to material
inhomogeneity in all the three cases. The geometrical growth or decay caused by the
inhomogeneity appears as a growth in the first, decay in the second and disappears in the third
problem. The analysis further reveals that the axis of symmetry in the first problem is a singular
line along which the velocity and stress grows beyond limit, and that, in the other two problems
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caustics can possibly form in the homogeneous region due to the converging rays initiating from
the linear region.

2. EQUATIONS OF GEOMETRICAL, KINEMATICAL AND DYNAMICAL COMPATIBILITY

In the present study we investigate the propagation of waves in nonhomogeneous linear
isotropic viscoelastic media. As the resulting disturbance moves through the medium, the
behavior is best understood if we use the notion of wave fronts. A wave front is defined as the
boundary between the disturbed and undisturbed regions or the initially disturbed region and the
one having additional disturbance. When the material at a point becomes suddenly disturbed
from an undisturbed state or when an already disturbed material point undergoes some additional
disturbance, it can only be so if the dependent variables, such as stresses, velocities, etc. or some
of their derivatives suffer finite jumps at the point. In our study we will consequently treat the
wave front as a surface of discontinuity and show its configuration at the time t by 1(t) (see Fig.
1). We refer the surface l(t)to a cartesian coordinate system (x lo X2, X3) and denote its unit
normal vector, in the moving direction of 1(t), bye. We show the moving side of 1(t) by (-) and
the opposite side by (+). If Z describes a physical quantity, which depends on both the position x
and the time t, its finite jump across 1(t) will be designated by a square bracket, defined by

[Z] = Z+ - Z.

The parametric equation of the surface 1(t) has the form

Xi = Xi(U", t),

(2.1 )

(2.2)

where u" denotes the surface coordinates of 1(t) and the superscript a takes the values I and 2.
In the succeeding discussions the Greek indices are assumed to take the values I and 2, whereas
the Latin indices range from 1 to 3.

There are three types of compatibility equations; namely, geometrical, kinematical and
dynamical equations, which are to be satisfied on the surfaces of discontinuity. These
compatibility conditions are investigated in detail by Thomas [9]. For the sake of completeness
we here review them very briefly.

We first define, on 1(t), the discontinuity of the quantity Z and that of its normal derivatives
with respect to the normal coordinate e (see Fig. 1) by

[Z] =A' [ofl =B' .[o2fl = C.
, oeJ ' oe2 J

(2.3)

The equations of geometrical compatibility, relating the partial derivatives of Z with respect
to Xi to A, Band C, then become

[:;.] = Bei +g"PA,,,XiP

[ 02Z ] = Ceiej + g"P(B,,, + g.....b""AOT)(eixjb + ejXjp) + gatlg.....(A,,,,, - Bb",,)XipXjn (2.4)
OXiOXj

where g"P = contravariant components of the first fundamental tensor of 1(t); b"" = covariant
components of the second fundamental tensor of 1(t); XiP = (oxilouP) and the subscript after
comma designates differentiation, e.g. A,,, = aAlau". In eqns (2.4) and the subsequent
discussions the indicial notation and the rules pertaining to its use are employed.

The equations of kinematical compatibility, relating the partial derivatives of Z with respect
to time t to A, Band C, are

(2.5)
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where G. is the normal component of the propagation velocity of 1(t) and the 8-time derivative
of a function f(x" t) is defined by

8f = lim f(P') - f(P)
8t A• ....o M

The points P and pi appearing in this expression are shown in Fig. 1.
The cartesian form of the dynamical equations of compatibility, related to the conservation of

mass and linear momentum, are

[p(G. - v.)] = 0

ej[oo/d = - p(G. - v.)[vd,
(2.6)

respectively. In eqns (2.6), p is the mass density, Vi and v. are the cartesian and normal
components of the particle velocity and 00,/ denote the components of the stress tensor.

3. EQUATIONS OF DECAY AND GROWTH

In subsequent discussions the body is referred to a cartesian coordinate system (XI> X2, X3)'

We first obtain the possible wave velocities by which the disturbances propagate in a
nonhomogeneous linear isotropic viscoelastic medium. We start our analyses by assuming that
the displacement u is continuous while the velocity and stress may suffer finite jumps on I(t), i.e.

[ud = 0; [vd ~ 0; [ooill ~ O. (3.1)

If v. is assumed to be small compared to the normal wave velocity G., the first of eqns (2.6)
implies that p is continuous on 1(t). The equation of dynamical compatibility of linear
momentum, the second of eqns (2.6), then takes the form

By writing the linear isotropic viscoelastic constitutive equations

oo,/(t) = 21£ (O)Ei/(t) +8,jA (O)Eklc(t) +f 21£ '(t - T)Eij(T) dT

+8,i1' A'(t-T)Ekk(T)dT

on both sides of I(t) and taking their differences we get

In eqn (3.3), Eli denote the components of the infinitesimal strain tensor

(3.2)

(3.3)

(3.4)

(3.5)

I£(t), A(t) are the Lame's relaxation functions of the viscoelastic material, 8ii is the usual
Kronecker delta and prime designates differentiation with respect to the time argument. In
writing eqn (3.3), the space dependences of CT'l> Ell> 1£ and A are not indicated explicitly for the
sake of brevity.

In view of the assumption [uil = 0, the geometrical and kinematical conditions, eqns (2.4) and
(2.5), and the strain-displacement relations, eqn (3.5), we obtain

(3.6)
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where ai stands for the discontinuity defined by

_ [aUi]
ai - ae . (3.7)

The linear momentum equation, eqn (3.2), with the aid of eqns (3.4) and (3.6), leads to the
well-known characteristic equation

(3.8)

revealing the existence of longitudinal and transverse waves with the propagation velocities

A(O)+ 21J-(0)
for longitudinal waves

p
G/=

IJ-(O) for transverse waves
p

and with the discontinuity vectors satisfying

a II e for longitudinal waves

a .L e for transverse waves.

(3.9)

We here note that the wave velocities depend on the spatial coordinates which result from the
nonhomogeneity of the medium.

We now start studying the growth and decay equations, which describe the change of the
strength of the discontinuity as the wave front moves. We begin our analyses with the equation of
linaear momentum

(Tji,j + pli = pUj, (3.10)

where f is the body force and dot denotes differentiation with respect to time. When eqn (3.10) is
written on both sides of ~(t) and their difference is taken we get

(3.11)

provided that the body force f is continuous on I(t). As a first step in evaluating the left hand side
of eqn (3.11), we ditlerentiate the constitutive equations, eqn (3.3), with respect Xj. We thus
obtain

(T jijt) = 21J-,j (O)Eji (t) + 21J- (O)Eji,j(t) + A,; (O)Ekk (t) + A(O)Ekk.i(t)

+{f 21J-'(t - r)Eji(r) drL +{f A'(t - r)Ekk(r) drL

(3.12)

Since the integrals in brackets are continuous at the wave front, the first of the geometrical and
the first of the kinematical compatibility equations, eqns (2.4) and (2.5), lead to

(3.13)

When eqns (3.5), (3.6)( and (3.13) are used, eqn (3.12) yields
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[tTj/il == II-AO)(a,ej + ale;} + A,,(O)atet + (11-(0) + A(O))[uIJd

II-'(O)+A'(O) 11-'(0)
+ II- (O)[Ui,/j] - O. a~je, --0: a,.

8S

(3.14)

With the aid of the second of the equations of geometrical compatibility, eqn (2.4)2' the
assumption that the displacement is continuous on I(t), and the relations

we obtain

[u"tt] = a~ - 2Oa,

[Ut,lei] == a te,et + g ",fj (at,,,, )(e,xtfj + etX'fj) - g",fjg~atba..x'~"'T'

(3.15)

(3.16)

where a~ == [a 2Ui/ae 2
] and 0 stands for mean curvature of I(t) defined by 20 == gafJbafj. On the

other hand, the second of eqns (2.5) gives

[ 00] *02 20 ~a, ~O.u, == a, • - .lit-a,""8t. (3.17)

Now we begin deriving the equations of growth and decay for the transverse and longitudinal
waves, separately.

(a) Transverse wave
We had previously found that the discontinuity vector is perpendicular to the propagation

direction for transverse waves, i.e.

(3.18)

If we differentiate this relation with respect to ua and use the relation [9]

(3.19)

we get

(3.20)

Multiplying both sides of the second of eqns (3.16) by a" summing over i, and using eqns (3.15),
(3.18) and (3.20), we obtain

(3.21)

When we multiply eqn (3.11) by a, and sum over i, and use eqns (3.14), (3.16).. (3.17), (3.18), (3.21)
and the relation 0/ = II-(O)/p, we obtain

(3.22)

where W is the strength of the transverse wave defined by

and

_ II- '(0)
m. - - 11-(0)'

(3.23)

(3.24)
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(b) Longitudinal wave
For the longitudinal wave the discontinuity vector is parallel to the direction of propagation,

Le.

(3.25)

If we differentiate eqn (3.25) with respect to u Q and use the relation (3.19), we get

(3.26)

Multiplying the second of eqn (3.16) by ej and summing over i, and using eqns (3.15), (3.25) and
(3.26), we find the relation

(3.27)

Equation (3.11), when multiplied by ej and summed over i, yields

(3.28)

in view of eqns (3.9)1, (3.14), (3.16), (3.17), (3.25) and (3.27). In eqn (3.28), W = a describes the
strength of the wave while

A'(0) + 2M '(0)
mL = - A(0)+2M(0) (3.29)

and Ge is given by eqn (3.9)1'
The equations of growth and decay for particle velocities and stresses for both the transverse

and longitudinal waves can be obtained from eqns (3.22) and (3.28) by employing the constitutive
relation (3.4), and eqns (3.6) which relate strains and particle velocities to the discontinuity
vector. They are

where

813 {18 I}8t + 2pG
e

8t (pGe) - Ge0 + '2 m {3 = 0 for velocity discontinuity

~J+{- 2P~e :r (pGe) - GeO +~ m}'Y = 0 for stress discontinuity,

(3.30)

(3 = [v,]; 'Y = [ITel]; m = ms;

Ge
2 __ A(0) + 2M (0)

for longitudinal wave
p

G/ = M(O) for transverse waves.
p

(3.31)

In eqns (3.31), Ve and ITee denote the normal particle velocity and stress whereas VI and ITer
represent the tangential particle velocity and stress at the wave front.

4. SOLUTIONS OF GROWTH AND DECAY EQUATIONS

The growth or decay of the particle velocity discontinuity {3 and the stress discontinuity 'Y can
be found by integrating eqn (3.30). They are

(4.1)
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1 l) 1
SI(t) = 2pG. l)t (pG.)- G.n+ 2m

-1 l) 1
S2(t) = 2pG. l)t (pG.) - G.n +2m,

87

(4.2)

and /30 and 'Yo are the values of the velocity and stress discontinuities at the initial time t = 0,
respectively.

In eqns (4.2), the first term on the right hand sides of the expressions for SI(t) or S2(t)
describes the effect of nonhomogeneity, the second term represents that of the geometry of the
wave front, while the last term corresponds to the influence of the material internal friction. We
should note that the geometry of the wave front and therefore the mean curvature n, as well as
the term m representing the effect of internal friction may be influenced by the nonhomogeneity.
From the study of eqns (3.24) and (3.29) and the experimental observations, showing the
negativeness of the time derivatives of the relaxation functions at t = 0, we further note that m
should be positive, implying that the internal friction causes the strength of the wave to decay as
the wave penetrates into the medium.

We now concentrate our attention on the evaluation of the integrals appearing in eqns (4.1).
We first notice that the equations of growth and decay, eqns (4.1), are valid along the rays which
carry the wave front as it propagates. Hence, to obtain the explicit forms of the growth and decay
equations, the ray equations should first be found so that p, G., n, m and therefore SI and S2 can
be determined as functions of time along the rays. The canonical forms of the ray equations for
the general anisotropic and nonlinear case are discussed in detail by Jeffrey and Taniuti[lO). In
the present study where the medium is assumed to be linear, isotropic and nonhomogeneous, the
ray equations take the forms

dXi PiG.
d( = (P,JJS/2

dpi __ (P )1/2 aGo
dt - tPt aXi'

(4.3)

where Pi =at/Jlaxi and t/J(xj, t) =0 is the equation of the wave front. We note that p is normal to
the wave front, therefore is parallel to the unit normal e. By solving the system of six first order
differential equations, eqns (4.3), together with the proper initial conditions, the equations of rays
x/ = x/(t), and Pi = p/(t) can be found.

5. PROPAGATION OF INITIALLY PLANE WAVES IN NONHOMOGENEOUS
VISCOELASTIC MEDIA

In this section we study the propagation of initially plane waves for three types of
inhomogeneities. In the first two cases, the inhomogeneity is assumed to be of axisymmetricaI
type whereas in the last case it is unidirectional.

(a) Axisymmetrical inhomogeneity with radially increasing wave velocity
Here, the medium is referred to a cylindrical coordinate system (r, 9, z) in which the z = 0

plane coincides with the initial plane wave front Io (Fig. 2). Further, we assume an inhomogeneity
such that the wave propagation velocity depends on the radial coordinate r only, with the
distribution

_jG.O
( 1+~) for r < b

G. - (b) ,
G.o 1+a for r ?: b

(5.1)

where a is a positive constant so that G. increases linearly up till r = b and remains constant
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thereafter. When, in view of the axisymmetrical nature of the problem, eqns (4.3) are integrated
for this distribution of wave velocity together with the initial conditions

r = ro ; z = 0, at t = 0

p, = 0; pz = 1, at t = 0,

the ray equations in nondimensional forms are found to be

f=fo; ==(1+6)( for f>6

f = 1+ fo_- 1; = = (l + fo)tanh ( for f < 6,
cosh t

where the nondimensional distances and time are defined as

( - - - b-) It b) - GeOtr, ro, Z, = _,r, ro, Z, ; t = - .
a a

(5.2)

(5.3)

(5.4)

(5.5)

Equations (5.3) show that the rays in the region f> 6 are parallel straight lines that are
perpendicular to the initial wave front Io.

For f < 6, however, the rays are not straight lines as seen from eqns (5.4). In fact, when the
time t is eliminated between the first and the second of eqns (5.4), we find

(5.6)

indicating that the rays are circular arcs with the radius (l + To) and the center (T, =) = (-1,0) in the
rz-plane. We note that eqns (5.4) or (5.6) are valid before the ray intersects the = - axis, i.e.

(5.7)

which follows from eqn (5.4), and the fact that f ~ O. In Fig. 2, drawn for 6 = 3, the rays for
various values of foare shown before t reaches lc,. To find the ray after it intersects the = - axis
(i.e., t> lcr), the ray equations, eqns (4.3), are again to be solved, but this time subject to the
initial conditions which are found by imposing that the slope corresponding to the initial values of
(p,., pJ is equal to that of the intersecting ray at the point of intersection. The analysis based on
these arguments indicates that the rays for f < 6 have periodic forms composed of circular arcs
and with the periods equal to 4V[(l + TO)2 -1]. For illustration the ray emanating from the point
fo= 1.5 is shown in Fig. 2.

The wave front at a fixed time t = t* can be found from the loci of the points on the rays
corresponding to that time. The wave fronts, so obtained, are shown in Fig. 2 for the times
t = 1.76, 2.07 and 2.29. We here note that t = 2.07, which is the time of arrival of the ray
emanating from the point fo= 6 =3 at the = - axis, can be considered as a critical time for the
forms of the wave fronts, and that the times chosen are less than, equal to and greater than this
value. We now study in detail the form of the wave front at t = 1.76. It is composed of two parts
which we call the leading and the lagging wave fronts. As shown in Fig. 2, the leading wave front
consists of the conic surface PCP' and the planes DE and D'E' while the lagging portion is a
surface of revolution described by AB'CB. It should be noted that a small portion of the lagging
wave front on the left of AR'CR, located between the points A and = = 1.76, is omitted for
simplicity. We also point out that the lagging wave front brings some additional disturbance to the
region where the leading wave front has already passed. The study of Fig. 2 further shows that
the region enclosed by DGFCP'G'D' seems theoretically undisturbed due to the discontinuity of
the derivative of Ge(r) at f = 6. However, if we smooth out the corner seen in the distribution of
Ge(r) at f = 6 by a very small circular arc, the theoretical undisturbed region mentioned above will
be filled out by the diverging secondary rays emanating from G and G' which form the secondary
wave front described by the lines DP and D'P'. Both the secondary rays and the wave fronts are
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drawn approximately and are shown by dotted lines in Fig. 2. It should be noted that in the interval
0< t < 2.07, the apex angle of the conic part of the leading wave front decreases as the time
increases. Further, the wave fronts corresponding to the times i = 2.07, 2.29 have similar forms as
that obtained for i = 1.76; they, however, have no conical portions (Fig. 2).

The decay and growth equations along the circular rays before they intersect the i-axis will
now be found by assuming that P =Po =constant and employing the general expressions, eqn
(4.1). In this case the wave front is a conical surface having the mean curvature

I
0=2;:" (5.8)

When the wave velocity distribution, eqn (5.1), and the mean curvature expression, eqn (5.8),
together with the first of eqns (5.4), describing the dependence of r on the time t, are used in eqns
(4.2) and the integrations indicated ineqns (4.1) are performed, we find

(
IIi _) - {AVh-A2)Sinhi+I-A2 1}1/[2~f3 = f30exp -- m d1" (cosh t)1/2 --
2 0 A - A 2 cosh t A

(5.9)

( IIi -d)( h t-)-I12{A V(1- A 2) sinh i +1- A 2'Y = 'Yoexp -- m 1" cos 2 -
2 0 A - A cosh t

which is valid for i::s; icr = cosh-I (1 +;0) and where

(5.10)

The first factor in eqns (5.9) describes the internal friction effect on the decay of the velocity and
stress discontinuities {3 and 'Y, discussed previously. The second factor in these equations
represents the direct influence of the inhomogeneity which reveals as a growth on the velocity
discontinuity and as a decay on the stress discontinuity as time increases, which is a natural
consequence of decreasing wave velocity with increasing distance measured along the rays. The
last factor denotes the geometrical effect due to material inhomogeneity and it is the same in both
the velocity and the stress expressions. Since '0> 0, the definition of A implies that A < I and
therefore (1- A 2) > O. When the geometrical factor is studied in view of this inequality, we
conclude that this factor, starting with the value of I at i = 0, increases with time and becomes
infinite for i = tcn at which the ray crosses the i-axis and thus the curvature 0 tends to infinity
at the point of intersection. This, in turn, shows that the i-axis is a singular straight line along
which the velocity and stress discontinuities increase beyond limit.

For the region, > 5, the material is homogeneous and the rays are parallel straight lines (Fig.
2) forming plane wave fronts. In view of eqns (4.1), the particle velocity and the stress
discontinuities suffer decays only due to material internal friction in this region.

(b) Axisymmetrical inhomogeneity with radially decreasing wave velocity
In this case the medium is again referred to a cylindrical coordinate system described in the

previous problem. The distribution for the wave propagation velocity is assumed to be in the
same form as in eqn (5.1), but this time a is a negative constant so that the wave velocity G.
decreases line8ily up till r = b and remains constant thereafter. Here b is assumed to be positive
and smaller than - a so that G. > O· for all r.

The equations of rays emanating from the points of10 lying in the region 0 < , < 5 can be found
by employing a procedure similar to that used in the previous section. They, in nondimensional
forms, are

, = 1- 1- '0_
cosh t

i= (1- '0) tanh 'i
(5.11)
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and
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(5.12)

(f, fo, Z) = _1_ (r, ro, z);
-a

(5.13)

The ray equations, eqns (5.1l) and (5.12), are valid before the rays intersect the f = ii = (b 1- a)

cylindrical surface, i.e. in the time interval

- < - - h- t 1- f ot ~ ter = cos --_,
I-b

(5.14)

and they are circular arcs of radius (1- i'o) with the center at (i', z) = (1, 0) as implied
by eqn (5.12), and are shown in Fig. 3 plotted for ii = 0.4. for t> ter, the rays are
straight lines which are tangent to the circular rays at the points of intersection with the surface
i' = ii. The rays emanating from f o> ii are of course parallel straight lines perpendicular to the
initial wave front !'o. The wave fronts are shown in Fig. 3 for three different times t = 0.96, 1.10
and 1.50, where i = 1.10, being the time of arrival of the ray emanating from f o = 0 at f = ii, is
considered as a critical value. The wave fronts at these three different times have similar forms
composed of leading and lagging parts; but the wave front for i < 1.10 has a leading conical
portion AB, whereas in the ones for i:3 1.10 this conical portion disappears (Fig. 3). The
secondary wave fronts form due to the similar reasons discussed in the previous section and are
shown in Fig. 3 by dotted lines.

The decay and growth equations abong the circular rays before they intersect the f = ii
surface are found by assuming that the mass density is constant and by employing the general
expressions, eqns (4.1), and the relation

for the mean curvature. They are

1
0=-2r (5.15)

f3 = f30 exp { _1 (' fir dT} (cosh t)112 exp { _ ! - i'o _ tan-I {~(2~ i'o)( - 1~ co~h t)}}
2Jo y[ro(2 - ro)] ro slOh T

(5.16)

'Y = 'Yo exp { _1 (' fir dT} (cosh tfl12 exp {_ 1- i'o _ tan-I{~(2 ~ fO) (- 1:- co~h t)}}
2Jo y[ro(2 - ro)] ro slOh t

which is valid for i ~ lcr = cosh- t {(l- f o)/(1- ii)} and where

(5.17)

The effects of internal friction and direct material inhomogeneity on the growth and decay of
velocity and stress discontinuities are the same as in the previous problem. However, the last
factor in eqns (5.16), representing the geometrical effect due to material inhomogeneity, has a
different form and will now be studied. Since i'o ~ ii < 1, the expression

is zero at t = 0 and then it continuously increases with time t, which causes a decay in both the
velocity and stress discontinuities as seen from eqns (5.16). The inspection of Fig. 3 further
shows that the rays emanating from the region O.s; i'o.s; ii are parallel in the domain bounded by
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the surface f = bwhereas they, outside this domain, converge towards ea~h other, which implies
possible formation of caustics where high stress and velocity intensifications may occur (see Ref.
[6] for more information about caustics).

(c) Unidirectional inhomogeneity
For this problem, the medium is referred to a cartesian coordinate system (Xl, X2, Xl) where

the Xl = 0 plane is taken as the initial plane wave front Io (Fig. 4). It is assumed that the
inhomogeneity occurs in the xrdirection only, resulting a wave velocity distribution

G.
o
( 1+ :2) for IX21 ~ b

G.= G.o(1+*) for x2>b (5.18)

G.o(1-*) for X2<- b,

where a is a positive constant so that G., starting with the constant value of G.°(l- bla) in
X2 < - b, increases linearly up to X2 = b and remains constant thereafter.

The rays initiating from the region IX21 ~ b of the initial wave front have, in nondimensional
forms, the equations

and

_ 1+ X20
x2=--_-1

cosh t

xl=(l+x2~tanhi
(5.19)

(5.20)

which are obtained by the aid of the ray equations, eqns (4.3). The nondimensional quantities
appearing in eqns (5.19) and (5.20) are defined as

i = G.o t
a ' (5.21)

and X20 designates the initial coordinate of the ray. The ray equations, (5.19) and (5.20), are valid
before the rays reach the plane X2 = - b = - (b Ia), i.e. in the time interval

- - _11+x2°t ~ tcr = cosh --_-,
I-b

(5.22)

and they are circular arcs of radius (l + X2~ and of the center at (XI, X2) = (0, -1) as seen from eqn
(5.20), and are shown in Fig. 4 for b = 0.4. For i> ier, they become straight lines tangent to the
circular rays at points of the plane X2 = - b. The rays, originating from the region IX201 > b of the
initial wave front, are parrallel straight lines normal to Io. The wave fronts, obtained with the aid
of the rays, are shown in Fig. 4 for two different times i = 1.21 and 1.60. The secondary wave
fronts are again shown by dotted lines in the same figure. Since the part AB of the leading wave
front is plane, Le. n = 0, the growth and decay equations along the circular rays, before they
reach the X2 = - b plane, become

tJ = tJoexp { -~f rii d'T} (cosh it2

'Y = 'Yo exp { - ~f rii dT} (cosh t)-1/2 for i ~ i.,,.,
(5.23)
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where m= (a/G.l)m and the mass density p is assumed to be constant. We note that the
geometrical decay or growth due to the nonhomogeneity disappears in this case and that the
converging rays reveal the formation of caustics in the region Xz < - b.
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